ADC Chemical Linkers Are Vital The covalent conjugation of monoclonal antibodies (mAbs) and cytotoxic drugs, known as antibody-drug conjugates (ADCs), is rapidly becoming a powerful component of cancer treatment. Hundreds of thousands of research articles and reviews are readily accessible…
Pharmaceutical companyCentrose, founded byJames R. Prudent, Ph.D., developed a new class ofantibody drug conjugatescalled extracellular drug conjugates. Nature Publishing Grouppublished the researchas a open access paper in its Molecular Therapy journal.1 Apart from the interesting and important development of a new class of antibody drug conjugate (ADC), the research also showed how important linker length 2 is to the potency and specificity of the EDC.
How Extracellular Drug Conjugates Work
Extracellular drug conjugates (EDCs) are designed similarly to ADCs. That is, EDCs consist of amonoclonal antibody(mAb), a linker, and a cytotoxic agent. Antibody drug conjugates require internalization into a diseased cell where the cytotoxic agent can then be released to act on its target.3 The cytotoxic agent may require intracellular modification or degradation to act on its target molecule.
By contrast, extracellular drug conjugates require no internalization. Rather, EDCs target cell surface proteins that are expressed on a target (i.e., cancerous) cell. Moreover, the cytotoxic agent that is linked to the mAb does not target the same protein targeted by the mAb. Rather, the cytotoxic agent kills the targeted cells by affecting a protein or enzyme that is different from the protein or enzyme bound by the mAb but that is closely associated with the target protein or enzyme. Clickhereto see Centrose's explanation of how EDCs work, including a three-minute video, which you can also view on Centrose's website.
In this particular study, the research team observed that some proteins that are overexpressed on the surface of cancer cells are closely associated with thesodium potassium ATPase1 (NKA, and also known as the sodium potassium pump; see Figure 1).Cardiac glycosidessuch as digoxin or ouabain inhibit the NKA. Cells affected by these or other cardiac glycosides swell, then undergo necrotic cell death.1,4,5 The team reasoned that by (1) combining antibodies to proteins that are both (a) overexpressed on the cell surface of cancer cells and (b) closely associated with the NKA (2) with cardiac glycosides that strongly inhibit the NKA (3) would create cancer therapeutic antibody drug conjugates that were localized to the extracellular space, hence, Extracellular Drug Conjugates.
Creating the Extracellular Drug Conjugates in this Study
Through prior testing (not in this paper) the team found that the cardiac glycoside scillarenin β-L-aminoxyloside (Figure 1) highly inhibited the NKA. This was chosen as the drug for conjugation to the antibody.
Figure 1: Scillarenin β-L-aminoxyloside, the cardiac glycoside used in this study as the cytotoxic agent for the extracellular drug conjugates.
The team also developed or acquired nine (9) mAbs. For directly testing the EDCs, the mAbs had to meet one of the following three criteria:
was a marker for metastatic cancer commonly known to associate with the NKA;
was cancer related and thought to associate with the NKA; or
was found by the current study to associate with the NKA and was a current cancer antibody drug target.
As controls, the research team selected mAbs to proteins that were expressed on the cell surface but did not associate with the NKA or that were not expressed on any cell surface.
The researchers also investigated the effect of linker length between the mAb and the drug (abbreviated CG1) using Quanta BioDesign's MAL-dPEG®n-NHS esters. These versatile heterobifunctional linkers come in a variety of specific lengths and are single molecular weight PEG derivatives (i.e., they have no dispersity). The maleimidopropyl group on one end reacts with free sulfhydryl groups forming a thioether linkage, while the NHS ester group on the other end will react with free amines to form a peptide bond. Four lengths of PEG — n = 2, 12, 24, and 36 dPEG® units (27, 56, 105, 144 Angstroms) — were chosen to connect CG1 to the EDC. See Figure 1. Although Figure 1 shows a single CG1-dPEG®n conjugated to the mAb, calculations by Centrose showed that the average EDC had a DAR of four (4). See reference 1, page 5.
Figure 2: MAL-dPEG®n-NHS-ester linkers used to construct the extracellular drug conjugates used in this study.
Extracellular Drug Conjugates Demonstrate In Vitro Efficacy...
The research team examined the efficacy of the extracellular drug conjugates after conjugating CG1 (the cardiac glycoside) to the mAb fordysadherin(a protein marker associated with metastatic cancer).They also measured the efficacy and toxicity of CG1 by itself or conjugated to one of the dPEG® linkers but not conjugated to the EDC.
For the EDC-dPEG®n-CG1 conjugates, the Centrose team first measured antibody binding on the surface of the different cell lines. Then, by monitoring cell viability, they tested the cells' sensitivity to the EDC-dPEG®n-CG1 conjugates at concentrations from 1 to 200,000 pmol/L. The dose-response curve in Figure 3, below, shows that increasing the linker length in EDC-dPEG®n-CG1 conjugates improved target specificity and potency. However, decreasing linker length in dPEG®n-CG1 constructs that were not conjugated to mAb increased toxicity and reduced specificity.
Figure 3: Dose-Response Curve and Potency-Specificity Graph for the Extracellular Drug Conjugates Based on Anti-dysadherin. Note that the potency and specificity increase with linker length for the mAb-dPEG®n-CG1 conjugates, but in the dPEG®n-CG1 constructs not conjugated to mAb, the specificity and toxicity increase as the linker length decreases.
Similar dose-response curves were obtained for some of the other tested cell lines. Cell lines expressing a cell surface antigen closely associated with the NKA were particularly sensitive to the EDC-dPEG®n-CG1 conjugates, but control cell lines (those either not expressing a cell surface antigen or expressing a cell surface antigen not associated with the NKA) were relatively insensitive to the EDC-dPEG®n-CG1 conjugates.
...And They Work In Vivo Also
The in vitro results also translated to in vivo studies in mice. In xenograft studies in mice bearing human pancreatic cancer tumors, EDC-DYS (EDC specific to dysadherin conjugated to dPEG®-CG1, with a DAR of 4) was compared to the standard dosing regimen of gemcitabine. EDC-DYS outperformed gemcitabine in a dose-dependent manner. Similarly, EDC-CD38 (a marker for various lymphomas and multiple myeloma) beat CHOP, a chemotherapy cocktail used as a standard treatment for Ramos B-cell lymphoma. Likewise, EDC-CD20 (another lymphoma marker) exceededRituximab'sperformance. The control experiments showed that EDC-CONTROL conjugates (mAb targeted to antigens not expressed on the cell surface) did not reduce tumor size in mice.
Extracellular Drug Conjugates Offer New Therapeutic Options
EDCs are a new class of antibody drug conjugate, and they offer new, and potentially superior, therapeutic options for patients. Though similar in design and construction to a standard ADC, an EDC is different. The EDC always resides in the extracellular space, and it targets two cell surface proteins. These two features define the EDC. Neither the mAb nor the cytotoxic drug need to be internalized, released, or broken down in order to act. Many cells evolve to evade chemotherapy by rapidly exporting or neutralizing drugs that are released intracellularly. This unique EDC feature impedes cells in evolving resistance to the EDC.
These results show that EDCs are potentially useful in killing cancers that are resistant to multiple drugs, metastatic, and/or aggressive. Thus, in the future, EDCs may offer new therapeutic options for cancers that are otherwise rather difficult to treat.
Quanta BioDesign's dPEG® Reagents Were Important to the Success of This Research
Quanta BioDesign's maleimido-dPEG®n-NHS ester products were important to the success of this research on extracellular drug conjugates. Unlike traditional PEG derivatives, our dPEG® derivatives are single molecular weight compounds. We manufacture all of our products entirely in the USA by a patented, proprietary process. Our dPEG®s have no dispersity. Consequently, standard analytical techniques suffice for analyzing them to determine their purity. With traditional, dispersed PEGs, "purity" becomes a much more elusive term and is more difficult to measure.
Whether you are developing a new ADC or something else, Quanta BioDesign can help. We have reagents for many different types of conjugation chemistry, and we are open to custom syntheses. We manufacture products on scales from milligrams to multiple kilograms. Our responsive customer service works hard to get you what you need when you need it. If you want to learn more about us,visit our website, orcontact us directly. You will be glad that you did.
A linker is the component of the antibody drug conjugate that joins a monoclonal antibody (mAb) to a cytotoxic drug. An ideal linker is stable in circulation but should release the cytotoxic drug when the mAb reaches the target. "Linker length" refers to the distance between the mAb and the cytotoxic drug. Distance may be expressed in number of atoms or in units of Angstroms.
For more information on how monoclonal antibodies and antibody drug conjugates work in cancer therapy go hereand/orhere.
Do you have questions or comments about this post? Please leave a comment below. Also, be sure and check out our list of related products below.
About the Author
Robert H. Woodman, Ph.D. is a Senior Product Development Scientist and the QC Manager for Quanta BioDesign, Ltd. He is on LinkedIn athttps://www.linkedin.com/in/roberthwoodman, on Twitter at @RobertHWoodman and @QuantaBioDesign. Feel free to contact him via social media.
Product Pages for the Quanta BioDesign Products Used in This Research
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.