References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See Chapter 18, Discrete PEG Reagents, pp. 787-821, for a full overview of the dPEG® products.
Azido-dPEG®24-acid, product number 10514, is a click chemistry reagent. The azide moiety on one end of the molecule can be used for copper(I)-catalyzed click chemistry or copper free click chemistry. Between the azide moiety and the propanoic acid moiety on the other end of the molecule is a single molecular weight, discrete polyethylene glycol (dPEG®) spacer. The propanoic acid moiety can be coupled to a primary or secondary amine through an acylation reaction.
Click chemistry enables rapid, chemoselective, stereospecific reactions between an azide and an alkyne leading to the formation of a triazole ring that joins the two reacted molecules. Since its discovery in 1998 and publication in 2001, click chemistry has grown consistently in popularity and importance for the development of new chemical structures. The first-reported click chemistry reactions were catalyzed by copper(I) and are known as Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC). Subsequently, copper free click chemistry (formally known as strain promoted azide alkyne cycloaddition, or SPAAC) was developed so as to facilitate click chemistry reactions in living cells without the use of toxic copper salts. For more information, please see Click Chemistry with dPEG® Reagents.
Quanta BioDesign’s dPEG® products are single molecular weight products. Unlike traditional, polymeric polyethylene glycol (PEG), dPEG® products contain a single molecular weight PEG chain with a discrete chain length. The use of dPEG® instead of traditional polymer PEG allows accurate characterization of conjugates without sacrificing any of the benefits of PEG. To learn more about Quanta BioDesign’s dPEG® technology, please see our What is dPEG®? page. To find answers to our frequently asked questions, please click here.
Activation of the propanoic acid moiety with an acylating agent enables conjugation of azido-dPEG®24-acid to a primary or secondary amine. Popular acylating agents include such as N-hydroxysuccinimide (NHS); 2,3,5,6-tetrafluorophenol (TFP); or 2,3,4,5,6-pentafluorophenol (PFP). Alternatively, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) or another suitable carbodiimide can be used to couple the acid moiety directly to an amine without prior activation.
Quanta BioDesign offers a broad array of click chemistry products. You can find all of them here.
If you need bulk product in a larger package size than our standard sizes, please contact us for a quote. Our commercial capabilities permit us to manufacture this product at any scale that you need.
Application References:
Hermanson, G. T. Chapter 17, Chemoselective Ligation; Bioorthogonal Reagents. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 757-786, particularly pages 769-775 where click chemistry is discussed. Click here now for a review of Greg’s book and a link to purchase it.
Hermanson, G. T. Chapter 18, PEGylation and Synthetic Polymer Modification. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 787-838.
Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Disc. Today, 2003, 8(24), 1128-1137.
Baskin, J. M.; Bertozzi, C. R. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR & Combinatorial Science2007, 26(11–12), 1211–1219. https://doi.org/10.1002/qsar.200740086.
Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol.2014, 9(3), 592–605. https://doi.org/10.1021/cb400828a.
Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. Top. Curr. Chem. (Z)2016, 374(2), 16. https://doi.org/10.1007/s41061-016-0016-4.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.