References: Greg T. Hermanson, Bioconjugate Techniques, 2nd Edition, Elsevier Inc., Burlington, MA 01803, April, 2008 (ISBN-13: 978-0-12-370501-3; ISBN-10: 0-12-370501-0). Specifically see pp. 726-729 in his Chapter 18 on discrete PEG compounds for pegylation applications.
Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See chapter 18, Discrete PEG Reagents, pp.787-821, for a full overview of the dPEG® products.
Azido-dPEG®4-TFP ester, product number 10567, is a crosslinking compound designed for copper(I)-catalyzed, ruthenium catalyzed, and strain promoted click chemistry. The azide group provides the click chemistry functionality. The 2,3,5,6-tetrafluorophenyl (TFP) ester provides reactivity to primary and secondary amines. The two ends of the molecule are separated by a single molecular weight, discrete polyethylene glycol (dPEG®) spacer. The spacer imparts water solubility to PN10567 and increases the hydrodynamic volume of the molecule. The single molecular weight and discrete chain length of the spacer simplifies analysis of the product and of its conjugates.
TFP esters are a superior alternative to the widely popular N-hydroxysuccinimidyl (NHS) esters. TFP esters are more hydrolytically stable than NHS esters, especially at high pH values (≥ 8) where NHS esters in aqueous solution have half-lives measured in minutes. TFP esters also react more efficiently with primary and secondary amines than NHS esters. For more information, please click TFP Esters Have More Hydrolytic Stability and Greater Reactivity Than NHS Esters.
Barry Sharpless and colleagues defined the rapid, chemoselective, stereospecific reactions between an azide and an alkyne leading to the formation of a triazole ring as click chemistry. From its publication in 2001, click chemistry has grown consistently in popularity and importance for the development of new chemical structures. The first-reported click chemistry reactions were catalyzed by copper(I) and are known as Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC). Classical CuAAC chemistry forms a 1,4-disubstituted triazole ring. Ruthenium catalyzed azide alkyne cycloaddition (RuAAC) operates similarly to CuAAC, but gives rise to 1,5-disubstituted triazole rings. Later, copper free click chemistry (formally known as strain promoted azide alkyne cycloaddition, or SPAAC) was developed by Carolyn Bertozzi and colleagues to facilitate click chemistry reactions in living cells without the use of toxic copper salts. For more information, please see Click Chemistry with dPEG® Reagents.
Hermanson, G. T. Chapter 3, The Reactions of Bioconjugation. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 229-258, especially pages 233-234 (NHS esters) and pages 238-239 (fluorophenyl esters). Want to learn more about Greg’s book? Click here now for a review of Greg’s book and a link to purchase it.
Hermanson, G. T. Chapter 17, Chemoselective Ligation; Bioorthogonal Reagents. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 757-786, particularly pages 769-775 where click chemistry is discussed.
Hermanson, G. T. Chapter 18, PEGylation and Synthetic Polymer Modification. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 787-838.
Baskin, J. M.; Bertozzi, C. R. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR & Combinatorial Science2007, 26(11–12), 1211–1219. https://doi.org/10.1002/qsar.200740086.
Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol.2014, 9(3), 592–605. https://doi.org/10.1021/cb400828a.
Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. Top. Curr. Chem. (Z)2016, 374(2), 16. https://doi.org/10.1007/s41061-016-0016-4.
Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem. Rev.2016, 116(23), 14726–14768. https://doi.org/10.1021/acs.chemrev.6b00466.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.