References: Greg T. Hermanson, Bioconjugate Techniques, 3rd Edition, Elsevier, Waltham, MA 02451, 2013, ISBN 978-0-12-382239-0; See Chapter 18, Discrete PEG Reagents, pp. 787-821, for a full overview of the dPEG® products.
Azido-dPEG®36-TFP ester, product number 10573, is a crosslinking compound designed for copper(I)-catalyzed, ruthenium-catalyzed, and strain promoted click chemistry. The azide group provides the click chemistry functionality. The 2,3,5,6-tetrafluorophenyl (TFP) ester offers excellent reactivity for primary and secondary amines. An extended, single molecular weight, discrete polyethylene glycol (dPEG®) spacer separates the reactive groups at each end of the molecule. The spacer imparts water solubility to Azido-dPEG®36-TFP ester and increases the hydrodynamic volume of the molecule. Moreover, the azide group on Azido-dPEG®36-TFP ester can act as a masked amine that reacts with carboxylic acid groups after reduction to a primary amine.
Traditional PEGylation Reagents and dPEG® Products
PEGylation is the process of modifying biomolecules and surfaces with polyethylene glycol (PEG). Traditionally, PEG products are non-uniform, disperse polymers comprised of multiple, different chain lengths of PEG, with each chain having a different molecular weight. The stated sizes of conventional PEG products are averages of the various chain lengths and molecular weights of PEG in the polymer mixture.
Quanta BioDesign’s products consist of discrete chain lengths of PEG. With only one chain length, the product has a single molecular weight. Thus, our PEG products are called “discrete PEG” products. Therefore, we sell them under the dPEG® tradename.
For more information on Quanta BioDesign’s dPEG® technology, please visit our “What is dPEG®?” page. For answers to our most frequently asked questions, please click here.
TFP Esters Compared to NHS Esters
TFP esters are a superior alternative to the widely popular N-hydroxysuccinimidyl (NHS) esters. TFP esters are more hydrolytically stable than NHS esters, especially at high pH values (≥ 8) where NHS esters in aqueous solution have half-lives measured in minutes. Also, TFP esters react more efficiently with primary and secondary amines than NHS esters. For more information, please click TFP Esters Have More Hydrolytic Stability and Greater Reactivity than NHS Esters.
Click Chemistry and dPEG® Products
From the first report by K. Barry Sharpless and colleagues in 2001, click chemistry has grown consistently in popularity and importance for the development of new chemical structures. The first-reported click chemistry reactions were catalyzed by copper(I) and are known as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Classical CuAAC chemistry forms a 1,4-disubstituted triazole ring. Ruthenium-catalyzed azide-alkyne cycloaddition (RuAAC) operates similarly to CuAAC but gives rise to 1,5-disubstituted triazole rings. Later, copper-free click chemistry (formally known as strain promoted azide-alkyne cycloaddition, or SPAAC) was developed by Carolyn Bertozzi and colleagues to facilitate click chemistry reactions in living cells without the use of toxic copper salts. For more information, please see Click Chemistry with dPEG® Reagents.
Commercial Scale Production Is Available for Azido-dPEG®36-TFP ester
If you need bulk product in a larger package size than our standard sizes, please contact us for a quote. Our commercial capabilities permit us to manufacture this product at any scale that you need.
Related Products
This product is one of several azido-dPEG®-TFP products with varying lengths of dPEG® spacers. Quanta BioDesign also offers a complete line of click chemistry products. The list of these products is here.
Act Now
Stop using conventional click chemistry crosslinkers! You can do better. Our click chemistry crosslinking reagents offer water solubility, improved hydrodynamic volume, no background noise (which means better signal), and no protein precipitation caused by aggregation. Why would younot use something better?
For cleaner click chemistry crosslinking, click the “Add to Cart” button now. You will not regret it. Click “Add to Cart” now.
Application References:
Hermanson, G. T. Chapter 3, The Reactions of Bioconjugation. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 229-258, especially pages 233-234 (NHS esters) and pages 238-239 (fluorophenyl esters). Want to learn more about Greg’s book? Click here now for a review of Greg’s book and a link to purchase it.
Hermanson, G. T. Chapter 17, Chemoselective Ligation; Bioorthogonal Reagents. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 757-786, particularly pages 769-775 where click chemistry is discussed.
Hermanson, G. T. Chapter 18, PEGylation and Synthetic Polymer Modification. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 787-838.
Baskin, J. M.; Bertozzi, C. R. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR & Combinatorial Science2007, 26(11–12), 1211–1219. https://doi.org/10.1002/qsar.200740086.
Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol.2014, 9(3), 592–605. https://doi.org/10.1021/cb400828a.
Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. Top. Curr. Chem. (Z)2016, 374(2), 16. https://doi.org/10.1007/s41061-016-0016-4.
Johansson, J. R.; Beke-Somfai, T.; Said Stålsmeden, A.; Kann, N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem. Rev.2016, 116(23), 14726–14768. https://doi.org/10.1021/acs.chemrev.6b00466.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.