m-dPEG®24-DBCO, product number 10583, is a methoxy-terminated, discrete polyethylene glycol (dPEG®) click chemistry reagent designed for chemical modification of surfaces through strain promoted azide alkyne cycloaddition (SPAAC). From the terminal methyl group to the reactive site on the dibenzylcyclooctyne (DBCO) group.

DBCO was designed for bio-orthogonal click chemistry applications using SPAAC, also known as copper free click chemistry, which was developed by Carolyn Bertozzi and colleagues to avoid the potential toxicity of Cu(I) that is used in Copper(I)-Promoted Azide Alkyne Cycloaddition (CuAAC) discovered by K. Barry Sharpless and colleagues. For more information on click chemistry applications, please go to Click Chemistry with dPEG® Reagents.

Traditional PEG is a dispersed polymer consisting of an intractable mixture of different chain lengths and molecular weights in a Poisson distribution. In contrast, each of Quanta BioDesign’s PEG products consists of a single molecular weight of PEG with a discrete chain length, hence the tradename dPEG®. Since our founding in 1999, Quanta BioDesign has been the world leader in dPEG® research, development, and manufacturing. For more information about our technology, please click here.

If you need bulk product in a larger package size than our standard sizes, please contact us for a quote. Our commercial capabilities permit us to manufacture this product at any scale that you need.

To see all of our click chemistry products, please click here.

Application References:

  1. Hermanson, G. T. Chapter 17, Chemoselective Ligation; Bioorthogonal Reagents. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 757-786, particularly pages 769-775 where click chemistry is discussed. Want to learn more about Greg’s book? Click here now for a review of Greg’s book and a link to purchase it.
  2. Hermanson, G. T. Chapter 18, PEGylation and Synthetic Polymer Modification. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 787-838.
  3. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
  4. Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Disc. Today, 2003, 8(24), 1128-1137.
  5. Baskin, J. M.; Bertozzi, C. R. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR & Combinatorial Science 2007, 26(11–12), 1211–1219. https://doi.org/10.1002/qsar.200740086.
  6. Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol. 2014, 9(3), 592–605. https://doi.org/10.1021/cb400828a.
  7. Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. Top. Curr. Chem. (Z) 2016, 374(2), 16. https://doi.org/10.1007/s41061-016-0016-4

Additional information

Weight .5 oz
Dimensions .75 × .75 × 2 in

You may also like…