m-dPEG®₁₂-DBCO

$250.00$680.00

Clear

m-dPEG®12-DBCO, product number 10596, is a methyl-terminated, discrete polyethylene glycol (dPEG®) click chemistry reagent designed for chemical modification of surfaces through strain promoted azide alkyne cycloaddition (SPAAC). The dPEG® spacer is 39 atoms (45.0 Å). From the terminal methyl group to the reactive site on the dibenzylcyclooctyne (DBCO) group, the total molecular length is 47 atoms (59.8 – 60.8 Å).

Building on the work of Carolyn Bertozzi and colleagues who developed SPAAC (also known as copper free click chemistry), DBCO was designed for bio-orthogonal click chemistry applications using SPAAC. SPAAC avoids the potential toxicity of Cu(I) that is used in Copper(I)-Promoted Azide Alkyne Cycloaddition (CuAAC) discovered by K. Barry Sharpless and colleagues. For more information on click chemistry applications, please go to Click Chemistry and dPEG®. {link}

Traditional PEG is a disperse polymer consisting of an intractable mixture of different chain lengths and molecular weights in a Poisson distribution. In contrast, each of Quanta BioDesign’s PEG products consists of a single molecular weight of PEG with a discrete chain length, hence the tradename dPEG®. From our founding in 1999, Quanta BioDesign developed the processes for manufacturing dPEG®. Today, we are the world leader in dPEG® research, development, and manufacturing. For more information about our technology, please click here. For answers to frequently asked questions, please click here.

If you need bulk product in a larger package size than our standard sizes, please contact us for a quote. Our commercial capabilities permit us to manufacture this product at any scale that you need.

To see all of our click chemistry products, please click here.

Application References:

  1. Hermanson, G. T. Chapter 17, Chemoselective Ligation; Bioorthogonal Reagents. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 757-786, particularly pages 769-775 where click chemistry is discussed. Click here now for a review of Greg’s book and a link to purchase it.
  2. Hermanson, G. T. Chapter 18, PEGylation and Synthetic Polymer Modification. Bioconjugate Techniques, 3rd edition. Academic Press: New York, 2013, pp 787-838.
  3. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed., 2001, 40, 2004-2021.
  4. Kolb, H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug Disc. Today, 2003, 8(24), 1128-1137.
  5. Baskin, J. M.; Bertozzi, C. R. Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR & Combinatorial Science 2007, 26(11–12), 1211–1219. https://doi.org/10.1002/qsar.200740086.
  6. Patterson, D. M.; Nazarova, L. A.; Prescher, J. A. Finding the Right (Bioorthogonal) Chemistry. ACS Chem. Biol. 2014, 9(3), 592–605. https://doi.org/10.1021/cb400828a.
  7. Dommerholt, J.; Rutjes, F. P. J. T.; van Delft, F. L. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides. Top. Curr. Chem. (Z) 2016, 374(2), 16. https://doi.org/10.1007/s41061-016-0016-4.

Additional information

Weight.5 oz
Dimensions.75 × .75 × 2 in